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Abstract— Bekasi city, in the Jakarta Metropolitan Region, 

is experiencing rapid urban growth and urban sprawl which 

have negative impacts on the natural resources, economy, public 

health, and community character. City planners often employ 

prediction models to forecast the future urban growth for 

managing policies and practices. This study identified three 

urban growth types (infilling, outlying, and edge-expansion) 

through an integrated approach of remote sensing, GIS, and 

spatial metrics analysis. Characterizing growth types found that 

infilling and edge-expansion were dominant in Bekasi city. 

These growth types are feasible for use as driving factors of land 

change modelling. A multilayer perceptron network was used 

for modelling urbanization (with and without urban-growth 

driving factors). It was found that a scenario with urban growth 

types as driving factors were more accurate than others. 

Prediction maps for 2030 and 2050 were also produced through 

this approach with two approaches including conservation and 

business-as-usual scenarios. Simulation results showed that the 

conservation scenario could minimize the effects of diminishing 

vegetation, bare land, and agriculture better than a business-as-

usual scenario. 
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I. INTRODUCTION 

Developing countries have become the focus of global 
urbanization since some of the world’s largest cities are in 
these countries [1]. As the capital city of Indonesia, Jakarta is 
experiencing rapid urban growth. This city is part of the 
Jakarta Metropolitan Region (JMR), i.e., Tangerang, Bogor, 
and Bekasi and is experiencing rapid urban growth. Some 
urban sprawls were created as a result of a “post-suburbia” in 
Jakarta Province, i.e., a declining population of the former 
central city and growth of other regions in the vicinity [2]. 
Cities near the central city became dominant. Post-suburbia 
create a polycentric structure, a structure with many centres 
[3]. To control the negative effects of sprawl, city planners 
have to consider issues not only at a city scale, but also at a 
metropolitan scale [4] since urban, peri-urban, and rural areas 
have their own growth characteristics [5], [6].  

 Previous studies on land use and land cover (LULC) 
change on different scales in a metropolitan region found that 
major land transitions varied in the urban and peri-urban zones 

within a metropolitan region [7], [8]. Another study analysed 
spatial metrics to understand the urban-growth characteristics 
in a metropolitan region [9]. These spatial metrics are 
calculated through remote sensing data to understand the type 
of growth, e.g., outlying, infilling, and edge-expansion [10]–
[14]. In the current study, spatial metrics were proposed as 
part of the driving factors of LULC change modelling.  

There were two parts of the current study. The first goal 
was to find the best driver compositions and project the LULC 
in 2030 and 2050. This part analysed the urban growth 
characteristics in JMR to create additional driving factors for 
LULC change modelling. In this regard, two models were 
prepared, i.e., with and without urban-growth driving factors. 
After the simulation, the results of the simulations were 
compared and analysed. The second part used the best driving 
factors found in LULC change prediction for 2030 and 2050 
in Bekasi city, Indonesia. Two approaches were used in the 
simulation of urban growth, conservation and business-as-
usual scenarios.  

The specific objectives of this study were to (1) 
quantitatively analyze urban growth characteristics in JMR 
and the feasibility of using these results as LULC change 
driving factors, and (2) use the change prediction modelling 
with different scenarios in the study area in 2030 and 2050. 

II. DATA AND METHODOLOGY 

A. Study Area 

Bekasi City, the study area, is part of the JMR (Fig. 1). It 
has around 210.49 km2 of area with more than 90% of its land 
used for residential purposes. The remaining area is for 
commercial, industrial, education, agricultural, and other uses 
[15]. Since the prices of housing in Jakarta, the capital city, 
and Cikarang, the main industrial area are high, many people 
chose to live in Bekasi. To meet the basic needs of people, 
many commercial and business locations, especially modern 
or traditional markets, are spread around the city. Settlements, 
commercial buildings, and other built-up areas are the main 
source of LULC conversion in Bekasi city. 



 

Fig. 1. Jakarta Metropolitan Region and Bekasi City 

B. Dataset 

For quantifying the different types of urban growth, four 
cloud-free Landsat TM/ETM+ images of JMR were acquired 
on July 19, 1988 (TM), July 31, 1998 (TM), August 1, 2010 
(TM), and August 31, 2015 (ETM+). These images were 
rectified to the WGS-84 datum and Universal Transverse 
Mercator (UTM) Zone 48N coordinate system. Another 
image acquired on October 8, 2000 (TM) was used for 
prediction modelling with an image on August 1, 2010 (TM). 

Prediction modelling requires other thematic parameters 
as driving factors including surface elevation, distance to 
streams/canals/water, housing information that includes 
roads, city centres, railway lines, hospitals, schools, and waste 
disposal. Two other socio-economic parameters, land prices 
and population density, were used as well. Three additional 
urban-growth based driving factors (infilling, edge-expansion 
locations, and distance to built-up change during 2010-2015) 
were created after growth-type analysis. Direct surveying was 
also conducted since the remote sensing data could not clearly 
classify particular land use classes that were needed for the 
LULC change drivers. Five LULC classes were mapped for 
change prediction. They included agricultural (area used for 
agricultural activity), bare land (area with no dominant 
vegetation cover), built-up (residential, commercial, 
industrial, and transportation), vegetation (trees, shrubs, and 
grasslands), and water (lakes, streams, canals, and rivers).c 

C. Method 

Quantifying Different Types of Urban Growth 

For quantifying the different types of urban growth, four 
cloud-free Landsat TM/ETM+ images of JMR were acquired 
on July 19, 1988 (TM), July 31, 1998 (TM), August 1, 2010 
(TM), and August 31, 2015 (ETM+). These images were 
rectified to the WGS-84 datum and Universal Transverse 
Mercator (UTM) Zone 48N coordinate system. Another 
image acquired on October 8, 2000 (TM) was used for 
prediction modelling with an image on August 1, 2010 (TM). 

Prediction modelling requires other thematic parameters 
as driving factors including surface elevation, distance to 
streams/canals/water, housing information that includes 
roads, city centres, railway lines, hospitals, schools, and waste 
disposal. Two other socio-economic parameters, land prices 

and population density, were used as well. Three additional 
urban-growth based driving factors (infilling, edge-expansion 
locations, and distance to built-up change during 2010-2015) 
were created after growth-type analysis. Direct surveying was 
also conducted since the remote sensing data could not clearly 
classify particular land use classes that were needed for the 
LULC change drivers. Five LULC classes were mapped for 
change prediction. They included agricultural (area used for 
agricultural activity), bare land (area with no dominant 
vegetation cover), built-up (residential, commercial, 
industrial, and transportation), vegetation (trees, shrubs, and 
grasslands), and water (lakes, streams, canals, and rivers). 

𝑃𝑎𝑡𝑐ℎ 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 (𝑃𝐷) =  
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where ni is number of patches in the landscape of patch 
type (class) I,  A is total landscape area (m2), ei is total length 
of the edge of class I, min ei is minimum total length of the 
edge (or perimeter) of class I, hij is the distance (m) to a patch 
of the same type, gii is number of like adjacencies between 
pixels of patch type, gik is the number of adjacencies between 
pixels of patch types i and k, and m is the number of pixels in 
the satellite image. 

The PLADJ was also used in the current study because of 
its intuitiveness and computational simplicity which has led to 
its common adoption [12]. Fragstats software was used to 
calculate these four spatial metrics. 

Prediction Modelling 

The Land Change Modeller (LCM) module in IDRISI 
Selva software was used for LULC simulation. The LULC 
maps of 2000 and 2010 were used to prepare the model. 
Another LULC map (2015) was used for validation. Change 
prediction was set to years 2030 and 2050. The selection of 
these years for prediction were based on the fact that the city 
government authorities have prepared a master city plan for 
2030 and the next 20-years (2030 2050). Land transitions were 
prepared with considerations based on the amount of land area 
that had changed. These transitions were checked regarding 
their sensitivity scores through a logistic regression training 
method. This method calculated a Relative Operating 
Characteristic (ROC) value for each transition before its use 
in sub-modelling. Only ROC scores above 0.75 were included 
in the model. Finally, every sub-model was trained with a 
Multi-layer Perceptron (MLP) Neural Network before being 
used for prediction. 

Selection of driving factors is a critical aspect in urban 
growth modelling. Based on previous research, 13 drivers 
were chosen and analysed before use in prediction [7]. The 
current study also used three additional drivers from urban-
growth type analysis. These 16 drivers were checked using 
Cramer’s V value, defined as: 

𝑉 =  √
∅2

min(𝑘−1,𝑟−1)
                                (5) 



where Ø is the mean square contingency coefficient, k is 
the number of columns and r is the number of rows [16]. Table 
1 shows driving factors of LULC change modelling used in 
our study. 

TABLE I.  DRIVING FACTORS AND NOTATIONS 

No. Category Notation Driving Factors 

1 Biophysical Elev Surface Elevation 

2 Slope Surface Slope 

3 DStr Distance to 

stream/canals/waters 

4 Infrastructure DHsc Distance to housing 

schemes 

5 DRd Distance to roads 

6 DCc Distance to city centre 

7 DBu Distance to built-up 

8 DR Distance to railways lines 

9 DH Distance to hospitals 

10 DS Distance to schools 

11 DWd Distance to waste disposal 

12 Socioeconomic LPr Land price 

13 Pop Population density 

14 Urban Growth Dedge Distance to edge-expansion 

type 

15 Dinfil Distance to infilling type 

16 DBuc Distance to built-up change 

from 2010 to 2015 

Scenarios 

In the current study, the scenario was used for comparing 
many factors in the simulation. The initial part employed two 
scenarios regarding urban-growth based drivers. The first 
scenario only used three biophysical-type, eight 
infrastructure-type, and two socioeconomic-type driving 
factors. The second scenario added three urban-growth type 
driving factors for land change modelling. The best scenario 
was chosen for prediction, based on the area under the ROC 
curve (AUC) [17].  

In the second part of this study, LULC change predictions 
were made for 2030 and 2050 with two approaches, business-
as-usual (BAU) and environmental conservation (CON) 
scenarios. Whereas there are no constraints in BAU (except 
the river within the study area), the CON scenario used 
constraints based on environmental issues, i.e., vegetation, 
parks, water, open spaces, and risk areas, among others. These 
constraints were used to handle the negative effects of land 
use, e.g., environmental degradation and climate change. [18]. 

III. RESULT AND DISCUSSION 

A. Types of Urban Growth 

Three types of urban growth (outlying, infilling, and edge 
expansion) were assessed by measuring urban changes during 
three-periods, 1988-1998, 1998-2010, and 2010-2015 (Fig. 2), 
and by analyzing spatial metrics (Fig. 3). 

Fig. 3a shows the changes of Patch Density (PD). This 
spatial metric increased exponentially, reaching its peak in 
1998. Euclidean Nearest-Neighbour Distance (ENN) reached 
its highest value in 1988. After some urban centres appeared, 
the urban patches fused and the boundaries of these urban 
areas dissolved. The ENN value decreased to its lowest value 
in 2010 (Fig. 3b). The Landscape Shape Index (LSI) increased 
steadily in the early stages of urbanization and decreased 
during the period of 2010-2015 (Fig. 3c). The Percentage of 
Like Adjacency (PLADJ) metric reached its highest value in 

1989, then decreased steadily and reached its lowest value in 
2010 before starting to increase in 2015 (Fig. 3d). 

 

Fig. 2. Spatial distribution of three types of urban growth within JMR 

during three periods: (a) 1988-1998, (b) 1998 2010, and (c) 2010-2015 

The spatial metrics result showed that PD and LSI scores 
were related to outlying (Hoffhine et al., 2003; Mcgarigal et 
al., 2015; Pham & Yamaguchi, 2011; Sun et al., 2013; Yue et 
al., 2013). When the PD and LSI decreased, outlying also 
decreased while infilling and edge-expansion increased. On 
the contrary, lower ENN scores and PLADJ metrics resulted 
in higher numbers of outlying regions. When they started to 
increase in 2010, the types of growth were predominantly 
infilling and edge-expansion. 

 

 

Fig. 3. Spatial metrics of JMR growth during the period 1988-2015: (a) PD, 

(b) ENN, (c) LSI, and (d) PLADJ. The lines shows curve-fitting of the four 

spatial-metric points 

Based on the characteristics of growth in 2015, only two 
urban-growth types were significant, infilling and edge-
expansion. Therefore, the distances to the infilling and edge 
expansion were also used as additional driving factors. They 
were categorized as urban growth with other factors, i.e., the 
distance to built-up change (2010 2015). 



 

 

 

Fig. 4. Driver maps for the Land Change Modeller based on urban growth: 

(a) Distance from infilling growth LUs, and (b) from edge-expansion growth 

LUs 

B. Land use Growth Modelling 

Fig. 5 shows LULC change from 2000 to 2010. The 
agriculture and bare land classes decreased by 2% and 15% 
respectively. The vegetation class sharply decreased by 40%, 
the built-up class increased greatly from 24% to 81%. The 
water class, which was dominated by the rivers, was stable at 
2%. 

 

Fig. 5. LULC maps and area graph of 2000 and 2010 

Table 2 shows the cross tabulation results. It depicts the 
conversion from one class to the other classes. There were 
nine significant conversions: agriculture to bare land, 
agriculture to built-up, agriculture to vegetation, bare land to 
agriculture, bare land to built-up, vegetation to agriculture, 
vegetation to bare land, vegetation to built-up, and water to 
built-up. 

TABLE II.  CROSS TABULATION OF LULC CHANGES BETWEEN 2000 

AND 2015 (IN HECTARES) 

To 

(2010) 

  

From (2000) 

Agri 

 

Bare 

land 

Built-

up 

Vege- 

tation Water Total 

Agri 

 
32.41 259.53 7.88 212.93 2.45 515.20 

Bare 

land 
126.13 212.58 83.12 656.92 41.60 1120.35 

Built-

up 
408.60 3683.04 5034.98 7764.61 111.33 17002.55 

Vege- 

tation 
158.1 0.79 1.66 1874.85 20.15 2055.54 

Water 44.85 0.88 0.44 40.12 269.07 355.35 

Total 770.08 4156.81 5128.09 10549.42 444.60 21049 

 

Table 2 shows the cross tabulation results. It depicts the 
conversion from one class to the other classes. There were 
nine significant conversions: agriculture to bare land, 
agriculture to built-up, agriculture to vegetation, bare land to 
agriculture, bare land to built-up, vegetation to agriculture, 
vegetation to bare land, vegetation to built-up, and water to 
built-up. 

TABLE III.  CRAMER’S V COEFFICIENTS SHOWING THE QUANTIFIED 

ASSOCIATION BETWEEN SELECTED LULC CLASSES AND THE DRIVING 

FACTORS 

Driving 

Factors 

Overall  Agri-

culture 

Bare 

land 

Built-

up 

Vege- 

tation 

Biophysical      

Elev 0.0134 0.0024 0.0061 0.0239 0.0071 

Slope 0.0520 0.0212 0.0119 0.0978 0.0715 

DStr 0.4252 0.0840 0.2116 0.7929 0.2571 

Infrastructure      

DHsc 0.4437 0.0840 0.2101 0.7845 0.2398 

DRd 0.4434 0.0754 0.2032 0.7826 0.2633 

DCc 0.4605 0.0985 0.2152 0.7941 0.3466 

DBu 0.4437 0.0840 0.2101 0.7845 0.2398 

DR 0.4626 0.1059 0.2136 0.7933 0.3639 

DH 0.4566 0.0798 0.2036 0.7896 0.3520 

DS 0.4507 0.0791 0.2044 0.7866 0.3152 

DWd 0.4638 0.1005 0.2186 0.7941 0.3658 

Socioeconomic      

LPr 0.4633 0.1023 0.2221 0.7963 0.3549 

Pop 0.4637 0.1009 0.2133 0.7969 0.3620 

Urban Growth      

DBUC 0.3871 0.1271 0.2768 0.5264 0.3493 

Dinfill 0.4684 0.1071 0.2188 0.8063 0.3672 

Dedge 0.4612 0.0984 0.2118 0.7970 0.3460 

Table 4 shows that some sub-models had the same targeted 
LULC transition, i.e. ‘to built-up’, ‘to bare land, ‘to 
agriculture’, and ‘to vegetation’. Sub-models having the same 
targeted LULC transition were grouped into one new sub-
models to speed up the training process. The multi-layer 
perceptron (MLP) neural network method was chosen as a 
training method since the other methods (logistic regression 
and SIMWEIGHT) cannot be used to train the grouped sub-
models. Automatic training and dynamic learning rates were 
used with parameters of the start learning rate, end learning 
rate, momentum factor, sigmoid constant, the number of 
layers at one node were 0.01, 0.001, 0.5, 1.0, and 7, 
respectively. The training process was run until achieving the 
stop condition. The stop conditions parameters, i.e., the Root 
Mean Square (RMS), number of iteration, and accuracy rate 
were set to 0.01, 10000, and 100 percent respectively. The 
logistic regression method, however, was still used to 
determine the Receiver Operating Characteristic (ROC) of 
every transition potential (Table 4). Since the ROC score of 
vegetation-to-agriculture was low (below 0.75), this LULC 
transition was dropped from the model. 

TABLE IV.  ROC VALUES SHOWING THE LEVEL OF ASSOCIATION 

BETWEEN SELECTED LAND TRANSITIONS AND THE DRIVING FACTORS 

FACTORS 

Sub-Model LULC Transition ROC 

1 Agriculture to Bare land 0.8023 

2 Agriculture to Built-up 0.9178 

3 Agriculture to Vegetation 0.7801 

4 Bare land to Agriculture 0.8414 

5 Bare land to Built-up 0.9856 

6 Vegetation to Agriculture 0.7189 

7 Vegetation to Bare land 0.8130 

8 Vegetation to Built-up 0.9701 

9 Water to Built-up 0.9686 



A MLP Neural Network was used to train the model. The 
MLP Neural Network parameters, the start learning rate, end 
learning rate, momentum factor, sigmoid constant, and the 
number of layer 1 nodes were set to 0.01, 0.001, 0.5, 1.0, and 
6, respectively. Additionally, the automatic training and 
dynamic learning rate were chosen with a stopping criterion 
that included the RMS, number of iterations, and accuracy rate 
equal to 0.01, 10000, and 100% respectively. Four sub-models 
(to built-up, to bare land, to vegetation, and to agriculture) 
were trained through the MLP Neural Network before change-
prediction simulation.  

To analyze the effects of urban-growth driving factor 
(distance to infilling, edge expansion, and built-up change), 
the Land Change Modeller with two scenarios was trained 
through a MLP Neural Network method. Fig. 7 shows the 
predictions of LULC in 2015 for both scenarios. The AUC 
score of the model with urban-growth factors was slightly 
higher than the model without these factors. Therefore, the 
model with urban-growth factors was chosen as a model for 
predicting the LULC change in 2030 and 2050. 

 

Fig. 6. Prediction results of LULC in 2015: (a) without urban-growth-

drivers (AUC = 0.92), and (b) with urban-growth drivers (AUC = 0.930) 

C. Land use Growth Projections (2030 and 2050) 

The Land Change Modeller with urban-growth driving 
factors, which had a better AUC score, was chosen for land-
use growth projection in 2030 and 2050. Sixteen driving 
factors and two scenarios (BAU and CON) were used. The 
scenarios differed in regard to constraints use. Whereas the 
CON scenario used many constraints and incentives for 
change prediction (Fig. 7), the BAU scenario only used water 
conservation (the river in Bekasi city) as a constraint. 

The constraints were created through merging of some 
restrictions, i.e., vegetation, park, lake, water, open spaces, 
and disaster risk areas (flood and polluted areas). Some 
incentive locations were also included, e.g., bare lands and 
other non-productive lands for new built-up locations. Fig. 8 
shows the projection result in 2030 and 2050 for both 
scenarios after the simulation process under CON and BAU 
scenarios. 

 

Fig. 7. Constraint for CON scenario 

Both scenarios showed decreasing agriculture, bare land, 
and vegetation areas and increasing built-up areas. However, 
the CON scenario could keep the vegetation to more than 2 
percent compared to BAU in which predicts almost 0% 
vegetation will remain, and that is a very dangerous situation 
(see Table 5 for the exact areas in hectares). The agriculture 
class was predicted to have almost disappeared in 2030 and 
2050 under both scenarios within the study area. This is usual 
in a city region. The CON constraint saved parks, vegetation, 
risk areas, and open spaces from changing into the other 
classes (usually into the built-up class). The city, which 
primarily consists of built-up areas, needs land-use 
optimization and management based on more specific land 
uses, e.g., settlements, schools, commercial areas, and 
industrial zones, among others. 

TABLE V.  LULC PROJECTION FOR BAU AND CON SCENARIOS IN 2030 

AND 2050 (IN HECTARES) 

Scenario   BAU CON 

Year 2015 2030 2050 2030 2050 

Agri- 

culture 
453.62 36.79 13.051 82.77 85.40 

Bare 

land 
568.89 131.73 71.823 306.82 274.94 

Built- 

up 
19075.88 20397.86 20588.631 19741.12 19794.63 

Vege- 

tation 
668.22 127.27 20.146 566.35 544.28 

Water 282.39 355.35 355.349 351.93 349.74 

 

It is recommended for the planners to use urban growth as 
a factor to manage their city land uses. The future generation 
should be considered when managing the current land use 
following the sustainable development concept as well as 
controlling the population growth.  



 

Fig. 8. Prediction result of LULC in 2030 and 2050: (a) Prediction result in 

2030 and 2050 for the BAU scenario, and (b) Prediction result in 2030 and 

2050 for the CON scenario 

IV. CONCLUSION 

The current study shows the feasibility of urban growth 
analysis used as LULC driving factors. It applied spatial 
metrics at the scale of a metropolitan region to increase the 
model accuracy. This study concluded that urban growth 
factors (infilling, edge-expansion, and built-up change) can be 
successfully used as driving factors for higher accuracy.  

The projection of LULC in 2030 and 2050 predicted that 
the CON scenario could better manage LULC in 2030 and 
2050 than the BAU scenario. The current study can be used as 
additional information for the local city planners to prepare 
their next city plan (2030-2050). 
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